https://warwick.ac.uk/fac/sci/maths/undergrad/ughandbook/year2/ma249/
2021年10月24日 星期日
2021年5月17日 星期一
2021年1月17日 星期日
2020年12月6日 星期日
2020年5月23日 星期六
2020年4月28日 星期二
2020年4月26日 星期日
group theory
Simon R. Blackburn
Combinatorics cryptography information theory group theory
https://scholar.google.co.uk/citations?user=PeQIxyoAAAAJ&hl=en
Peter Neumann
Stanford University
Verified email at stanford.edu
neural plasticityensemblesaddictioncircuits
https://scholar.google.com/citations?user=mHNWKY4AAAAJ&hl=en
Peter M. Neumann
https://scholar.google.com/scholar?q=%5B7%5D+Peter+M.+Neumann+D.+Phil.+Thesis+University+of+Oxford+1966
https://www.javatpoint.com/discrete-mathematics-normal-subgroup
師大 陳華介教授
http://math.ntnu.edu.tw/~li/algebra-html/node13.html
http://math.ntnu.edu.tw/~li/algebra-html/algebra.pdf
http://www2.chsh.chc.edu.tw/bee/108algebra/1080303.pdf
https://hackmd.io/@0xff07/ryQE2n3SI
https://hackmd.io/@0xff07/BJWaeWArL/https%3A%2F%2Fhackmd.io%2F%400xff07%2FByT4ldAS8
Sage
http://doc.sagemath.org/html/en/thematic_tutorials/group_theory.html#normal-subgroups
https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf
https://www.macs.hw.ac.uk/~jim/F13YR1/Notes.pdf
https://books.google.com.tw/books?id=4PWKDwAAQBAJ&pg=PA67&lpg=PA67&dq=normal+group+tutorial&source=bl&ots=T6sZfVNDyN&sig=ACfU3U3lTyA62FyKuvRxlEOjPSDDG9hRrA&hl=zh-TW&sa=X&ved=2ahUKEwjTgqD3gIfpAhU2yYsBHWKnD2sQ6AEwGHoECAwQAQ#v=onepage&q=normal%20group%20tutorial&f=false
https://www.jmilne.org/math/CourseNotes/GT.pdf
https://nathancarter.github.io/group-explorer/help/rf-groupterms/#simple-group
GAP
https://www.gap-system.org/Manuals/doc/tut/manual.pdf
Combinatorics cryptography information theory group theory
https://scholar.google.co.uk/citations?user=PeQIxyoAAAAJ&hl=en
Peter Neumann
Stanford University
Verified email at stanford.edu
neural plasticityensemblesaddictioncircuits
https://scholar.google.com/citations?user=mHNWKY4AAAAJ&hl=en
Peter M. Neumann
https://scholar.google.com/scholar?q=%5B7%5D+Peter+M.+Neumann+D.+Phil.+Thesis+University+of+Oxford+1966
https://www.javatpoint.com/discrete-mathematics-normal-subgroup
師大 陳華介教授
http://math.ntnu.edu.tw/~li/algebra-html/node13.html
http://math.ntnu.edu.tw/~li/algebra-html/algebra.pdf
http://www2.chsh.chc.edu.tw/bee/108algebra/1080303.pdf
https://hackmd.io/@0xff07/ryQE2n3SI
https://hackmd.io/@0xff07/BJWaeWArL/https%3A%2F%2Fhackmd.io%2F%400xff07%2FByT4ldAS8
Sage
http://doc.sagemath.org/html/en/thematic_tutorials/group_theory.html#normal-subgroups
https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf
https://www.macs.hw.ac.uk/~jim/F13YR1/Notes.pdf
https://books.google.com.tw/books?id=4PWKDwAAQBAJ&pg=PA67&lpg=PA67&dq=normal+group+tutorial&source=bl&ots=T6sZfVNDyN&sig=ACfU3U3lTyA62FyKuvRxlEOjPSDDG9hRrA&hl=zh-TW&sa=X&ved=2ahUKEwjTgqD3gIfpAhU2yYsBHWKnD2sQ6AEwGHoECAwQAQ#v=onepage&q=normal%20group%20tutorial&f=false
https://www.jmilne.org/math/CourseNotes/GT.pdf
https://nathancarter.github.io/group-explorer/help/rf-groupterms/#simple-group
GAP
https://www.gap-system.org/Manuals/doc/tut/manual.pdf
2020年1月29日 星期三
algebra
Curriki
https : //www.curriki.org/oer/Curriki-Algebra--Content-of-Contents
https://math.stackexchange.com/questions/217285/applications-of-abstract-algebra-to-elementary-mathematics/217706#217706
https://bookauthority.org/books/best-abstract-algebra-books
http://abstract.pugetsound.edu/sage-aata.html
NOC:Introduction to Abstract and Linear Algebra
https : //www.curriki.org/oer/Curriki-Algebra--Content-of-Contents
https://math.stackexchange.com/questions/217285/applications-of-abstract-algebra-to-elementary-mathematics/217706#217706
https://bookauthority.org/books/best-abstract-algebra-books
http://abstract.pugetsound.edu/sage-aata.html
NOC:Introduction to Abstract Group Theory |
NOC:Groups : Motion, symmetry and puzzles |
NOC:Graph Theory |
NOC:Measure Theory
Measure and Integration
Abstract Algebra, Lec 10B, Symmetric Group S3, Generators & Relations, Permutation Properties
10. Finite symmetric groups. S1,S2,S3
2019年6月24日 星期一
2019 joint summer school
Joint summer school on Toric varieties
venue National center of theorem sciences
Speakers
David Cox (University of Massachusetts, Amherst)
Henry Schenck (Iowa State University)
Suggested Prerequisites
● Chapters 1,2,3,4,5,8 of "Ideals, Varieties and Algorithms" and Sections 1.0, 2.0, 3.0, 4.0 and 6.0 of "Toric Varieties" (Section 0 of these chapters is a background section that discusses algebraic geometry with no knowledge of toric varieties required).
An alternative to the Sections 0 would be "Introduction to Algebraic Geometry",
available at https://dacox.people.amherst.edu/.
● Chapters 1,2,3,4 of Ravi Vakil's excellent text "Foundation of Algebraic Geometry",
freely available at math.stanford.edu/~vakil/216blog/FOAGjun1113public.pdf
● Chapters 1 and 2 of Hartshorne's "Algebraic Geometry".
venue National center of theorem sciences
Speakers
David Cox (University of Massachusetts, Amherst)
Henry Schenck (Iowa State University)
Suggested Prerequisites
● Chapters 1,2,3,4,5,8 of "Ideals, Varieties and Algorithms" and Sections 1.0, 2.0, 3.0, 4.0 and 6.0 of "Toric Varieties" (Section 0 of these chapters is a background section that discusses algebraic geometry with no knowledge of toric varieties required).
An alternative to the Sections 0 would be "Introduction to Algebraic Geometry",
available at https://dacox.people.amherst.edu/.
● Chapters 1,2,3,4 of Ravi Vakil's excellent text "Foundation of Algebraic Geometry",
freely available at math.stanford.edu/~vakil/216blog/FOAGjun1113public.pdf
● Chapters 1 and 2 of Hartshorne's "Algebraic Geometry".
標籤:
algebra,
summer school
2019年4月3日 星期三
訂閱:
文章 (Atom)