顯示具有 algebra 標籤的文章。 顯示所有文章
顯示具有 algebra 標籤的文章。 顯示所有文章

2020年4月26日 星期日

group theory

Simon R. Blackburn
Combinatorics  cryptography information theory group theory

https://scholar.google.co.uk/citations?user=PeQIxyoAAAAJ&hl=en


Peter Neumann
Stanford University
Verified email at stanford.edu
neural plasticityensemblesaddictioncircuits
https://scholar.google.com/citations?user=mHNWKY4AAAAJ&hl=en


Peter M. Neumann
https://scholar.google.com/scholar?q=%5B7%5D+Peter+M.+Neumann+D.+Phil.+Thesis+University+of+Oxford+1966


https://www.javatpoint.com/discrete-mathematics-normal-subgroup

師大 陳華介教授
http://math.ntnu.edu.tw/~li/algebra-html/node13.html
http://math.ntnu.edu.tw/~li/algebra-html/algebra.pdf

http://www2.chsh.chc.edu.tw/bee/108algebra/1080303.pdf

https://hackmd.io/@0xff07/ryQE2n3SI
https://hackmd.io/@0xff07/BJWaeWArL/https%3A%2F%2Fhackmd.io%2F%400xff07%2FByT4ldAS8

Sage
http://doc.sagemath.org/html/en/thematic_tutorials/group_theory.html#normal-subgroups

https://math.berkeley.edu/~apaulin/AbstractAlgebra.pdf

https://www.macs.hw.ac.uk/~jim/F13YR1/Notes.pdf

https://books.google.com.tw/books?id=4PWKDwAAQBAJ&pg=PA67&lpg=PA67&dq=normal+group+tutorial&source=bl&ots=T6sZfVNDyN&sig=ACfU3U3lTyA62FyKuvRxlEOjPSDDG9hRrA&hl=zh-TW&sa=X&ved=2ahUKEwjTgqD3gIfpAhU2yYsBHWKnD2sQ6AEwGHoECAwQAQ#v=onepage&q=normal%20group%20tutorial&f=false

https://www.jmilne.org/math/CourseNotes/GT.pdf

https://nathancarter.github.io/group-explorer/help/rf-groupterms/#simple-group

GAP
https://www.gap-system.org/Manuals/doc/tut/manual.pdf






2019年6月24日 星期一

2019 joint summer school

Joint summer school on Toric varieties
venue National center of theorem sciences

Speakers
David Cox (University of Massachusetts, Amherst) 
Henry Schenck (Iowa State University) 


Suggested Prerequisites 
Chapters 1,2,3,4,5,8 of "Ideals, Varieties and Algorithms" and Sections 1.0, 2.0, 3.0, 4.0 and 6.0 of "Toric Varieties" (Section 0 of these chapters is a background section that discusses algebraic geometry with no knowledge of toric varieties required). 
 An alternative to the Sections 0 would be "Introduction to Algebraic Geometry", 
 available at https://dacox.people.amherst.edu/. 
Chapters 1,2,3,4 of Ravi Vakil's excellent text "Foundation of Algebraic Geometry",
  freely available at math.stanford.edu/~vakil/216blog/FOAGjun1113public.pdf 
Chapters 1 and 2 of Hartshorne's "Algebraic Geometry".