前言
- 數形合一
- 新課綱:數學學習重點與實施要點納入計算機工具與科技的使用與觀念。學習工具對於數學教學助益極大。除了傳統教具如圓規、三角板、方格紙等,資訊時代 的計算機 (calculator) 、電腦 (computer) 、網路、多媒體、行動工具等都是有用的學習工具。數學是一種規律的科學,計算機及電腦可以協助落實探究活動。
- 姚鴻澤院士:教證明時, 若畫個圖能一目了然, 看到直覺的觀點, 那麼只畫一個圖就好了。 這樣就非常簡單, 學生也很快可以學會。
- 吳建銘教授(東華應數系系主任):20世紀的數學是加了電腦以後的數學
OUTLINE
- 圓方程式
- 圓方程式之判別式與圓之關係
- 橢圓方程式及定義
- 雙曲線方程式及定義
- 拋物線方程式及定義
ggb
https://www.geogebra.org/graphing
1.圓方程式
標準式:(x-h)^2+(y-k)^2=r^2
(畢氏定理)
ggb
Execute({"h=1","k=-1","O=(h,k)","r=5"})
(x-h)^2+(y-k)^2=r^2
Point(eq1)
(點圓上任意一點A)
x=h
y=k
Segment(A,O)
PerpendicularLine(A,y=k)
(or input OrthogonalLine(A,y=k)
(過A點做垂直線交y=k於B點)
setTrace(A,true)
StartAnimation(A)
(在A點 點右鍵show trace, animation)
[r 動畫(A軌跡成心形線)]
Execute({"h=1","k=-1","O=(h,k)","r=5",
"eq1:(x-h)^2+(y-k)^2=r^2","A:Point(eq1)","x=h","f:y=k","Segment(A,O)",
"i:OrthogonalLine(A,f)","Intersect(f,i)","setTrace(A,true)","StartAnimation(A)"})
2.圓方程式
一般式:x^2+y^2+dx+ey+f=0
判別式: D=d^2+e^2-4f
D>0 <==>圓
D=0 <==>點
D<0 <==>虛圓
x^2+y^2+dx+ey+f=0
d=3
O=(d/-2,e/-2)
D=d^2+e^2-4f
r=1/2 sqrt(D)
Point(eq1)
Segment(A,O)
StartAnimation(d)
Execute({"d=3","eq1:x^2+y^2+dx+ey+f=0","O=(d/-2,e/-2)",
"D=d^2+e^2-4f","r=1/2 Sqrt(D)","A=Point(eq1)",
"g:Segment(A,O)","StartAnimation(d)"})
3.橢圓方程式
(x-h)^2/a^2+(y-k)^2/b^2=1
定義
PF1+PF2=2a
ggb
Execute({"a=5","b=4","c=sqrt(a^2-b^2)","h=1","k=-1","O=(h,k)"})
(x-h)^2/a^2+(y-k)^2/b^2=1
F1=(h-c,k)
F2=(h+c,k)
Point(eq1)
l1:Segment(A,F1)
l2:Segment(A,F2)
Length(l1)+length(l2)
setTrace(A,true)
StartAnimation(A)
(在A點 點右鍵 show trace, animation(開始動畫))
由定義畫出軌跡
(Point A 動畫off)
eq2:Circle(F1,2 a)
Point(eq2)
l3:Segment(B,F1)
l4:Segment(B,F2)
l5:PerpendicularBisector( l4)
C:intersect(l5,l3)
setTrace(C,true)
StartAnimation(B)
(做BF2的中垂線交BF1,在交點上點右鍵 show trace. 圓上B 點右鍵animation)
4.雙曲線方程式
(x-h)^2/a^2-(y-k)^2/b^2=1
定義
|PF1-PF2|=2a
ggb
Execute({"a=3","b=4","c=sqrt(a^2+b^2)","h=1","k=-1","O=(h,k)"})
(x-h)^2/a^2-(y-k)^2/b^2=1
F1=(h-c,k)
F2=(h+c,k)
Point(eq1)
b(x-h)+a(y-k)=0
b(x-h)-a(y-k)=0
Segment(A,F1)
Segment(A,F2)StartAnimation(A)
(在A點 點右鍵 show trace, animation(開始動畫))
https://www.geogebra.org/m/eqxdczkb
=======================================
依次輸入ggb code
Execute({"(x-h)^2/a^2-(y-k)^2/b^2=1",
"F1=(h-c,k)",
"F2=(h+c,k)",
"Point(eq1)",
"b(x-h)+a(y-k)=0",
"b(x-h)-a(y-k)=0",
"Segment(A,F1)",
"Segment(A,F2)",
"StartAnimation(A)"})
由定義畫出軌跡
(Point A 動畫off)
eq2:Circle(F1,2 a)
Point(eq2)
Line(B,F1)
Segment(B,F2)
(做BF2的中垂線交BF1,在交點上點右鍵 show trace. 圓上B 點右鍵animation)
StartAnimation(B)
5.拋物線
(y-k)^2=4c(x-h)
定義
d(P,L)=PF
Execute({"c=5","h=1","k=-1","V=(h,k)"})
(y-k)^2=4c(x-h)
F=(h+c,k)
L:x= h-c
A:Point(eq1)
l1:Segment(A,F)
l2:PerpendicularLine(A,L)
StartAnimation(A)
由定義畫出軌跡
(Point A 動畫off)
B:Point(L)
g:Segment(B,F)
l3:PerpendicularBisector(g)
C:Intersect(l2,l3 )
StartAnimation(C)